Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38311942

RESUMO

Objective: To investigate the effects of carbon black and cadmium (Cd) combined exposure on autophagy and inflammatory response mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in human bronchial epithelial (16HBE) cells. Methods: In January 2022, human bronchial epithelial (16HBE) cells were resuscitated and cultured. Carbon black nanoparticles (CBNPs) were oxidized to adsorb Cd ions to construct "CBNPs-Cd" complexes. CCK-8 assay was used to detect the effects of different concentrations and time combinations of CBNPs and Cd on the viability of 16HBE cells. The subsequent dose groups were exposed to 2 µg/ml Cd, 100 µg/ml CBNPs, 100 µg/ml CBNPs+2 µg/ml Cd for 24 h. The number of autophagosomes and autolysosomes was detected by transmission electron microscopy. Western blotting was used to detect the protein expressions of PERK, eukaryotic initiation factor 2α (eIf2α), activating transcription factor 4 (ATF4), sequestosome 1 (SQSTM1/P62), and microtubule-associated protein 1 light chain 3 (LC3). After PERK gene was silenced by siRNA technology, the changes of autophagy marker proteins P62 and LC3 were detected, and the expressions of inflammatory factors interleukin-6 (IL6) and interleukin-8 (IL8) were detected by fluorescence quantitative PCR technique. One-way ANOVA analysis was used to compare three groups or more. LSD test was used for comparison between two groups. Factorial analysis was used for multivariate component analysis. Results: There was no significant change in cell viability of 16HBE after 24 h exposure to CBNPs and Cd alone or combined (P>0.05). Compared with the control group, the expressions of P62 and LC3 in 16HBE cells were significantly increased in the CBNPs and Cd alone/combined exposure group (P<0.05), and the number of autophagosomes and autophagolysosomes in the combined exposure group was increased compared with other groups. Compared with the control group, CBNPs and Cd alone exposure group had no significant effects on p-PERK/PERK and p-eIf2α/eIf2α protein expression (P>0.05). However, the protein expressions of p-PERK/PERK and p-eIf2α/eIf2α and ATF4 were all increased in the combined exposure group (P<0.05), and the levels of IL6 and IL8 in 16HBE cells in the combined exposure group of CBNPs and Cd were significantly higher than those in the control group (P<0.05). The levels of LC3 protein, IL6 and IL8 were decreased in the CBNPs-Cd combined exposure group after knockdown of PERK gene (P<0.05). The results of factorial analysis showed that exposure to CBNPs and Cd had significant effects on the expression of P62, LC3 and IL6 (P<0.05), but the interaction between the two chemicals had no statistical significance (P>0.05) . Conclusion: CBNPs-Cd combined exposure may inhibit autophagy and increase inflammation in human bronchial epithelial cells through activation of PERK-eIf2α-ATF4 pathway.


Assuntos
Cádmio , Fuligem , Humanos , Cádmio/toxicidade , Fuligem/toxicidade , Interleucina-8 , Interleucina-6 , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/farmacologia , Autofagia , Células Epiteliais/metabolismo , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Inflamação
2.
Environ Pollut ; 346: 123562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365078

RESUMO

Carbon black and cadmium (Cd) are important components of atmospheric particulate matter and cigarette smoke that are closely associated with the occurrence and development of lung diseases. Carbon black, particularly carbon black nanoparticles (CBNPs), can easily adsorbs metals and cause severe lung damage and even cell death. Therefore, this study aimed to explore the mechanisms underlying the combined toxicity of CBNPs and Cd. We found that the combined exposure to CBNPs and Cd promoted significantly greater autophagosome formation and ferroptosis (increased malonaldehyde (MDA), reactive oxygen species (ROS), and divalent iron ions (Fe2+) levels and altered ferroptosis-related proteins) compared with single exposure in both 16HBE cells (human bronchial epithelioid cells) and mouse lung tissues. The levels of ferroptosis proteins, transferrin receptor protein 1 (TFRC) and glutathione peroxidase 4 (GPX4), were restored by CBNPs-Cd exposure following treatment with a 3-MA inhibitor. Additionally, under CBNPs-Cd exposure, circPSEN1 overexpression inhibited increases in the autophagy proteins microtubule-associated protein 1 light chain 3 (LC3II/I) and sequestosome-1 (P62). Moreover, increases in TFRC and Fe2+, and decreases in GPX4were inhibited. Knockdown of circPSEN1 reversed these effects. circPSEN1 interacts with autophagy-related gene 5 (ATG5) protein and upregulates nuclear receptor coactivator 4 (NCOA4), the co-interacting protein of ATG5, thereby degrading ferritin heavy chain 1 (FTH1) and increasing Fe2+ in 16HBE cells. These results indicated that the combined exposure to CBNPs and Cd promoted the binding of circPSEN1 to ATG5, thereby increasing autophagosome synthesis and ATG5-NCOA4-FTH1 axis activation, ultimately inducing autophagy-dependent ferroptosis in 16HBE cells and mouse lung tissues. This study provides novel insights into the toxic effects of CBNPs and Cd in mixed pollutants.


Assuntos
Cádmio , Ferroptose , Humanos , Camundongos , Animais , Cádmio/toxicidade , Fuligem/toxicidade , Autofagia , Células Epiteliais
3.
Environ Res ; 242: 117733, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000634

RESUMO

Carbon black nanoparticles (CBNPs) and cadmium (Cd) are major components of various air pollutants and cigarette smoke. Autophagy and inflammation both play critical roles in understanding the toxicity of particles and their components, as well as maintaining body homeostasis. However, the effects and mechanisms of CBNPs and Cd (CBNPs-Cd) co-exposure on the human respiratory system remain unclear. In this study, a CBNPs-Cd exposure model was constructed to explore the respiratory toxicity and combined mechanism of these chemicals on the autophagy-lysosome pathway in the context of respiratory inflammation. Co-exposure of CBNPs and Cd significantly increased the number of autophagosomes and lysosomes in human bronchial epithelial cells (16HBE) and mouse lung tissues compared to the control group, as well as the groups exposed to CBNPs and Cd alone. Autophagic markers, LC3II and P62 proteins, were up-regulated in 16HBE cells and mouse lung tissues after CBNPs-Cd co-exposure. However, treatment with Cq inhibitor (an indicator of lysosomal acid environment) resulted in a substantial decreased co-localization fluorescence of LC3 and lysosomes in the CBNPs-Cd combination group compared with the CBNPs-Cd single and control groups. No difference in LAMP1 protein expression was observed among the exposed groups. Adding 3 MA alleviated inflammatory responses, while applying the Baf-A1 inhibitor aggravated inflammation both in vitro and in vivo following CBNPs-Cd co-exposure. Factorial analysis showed no interaction between CBNPs and Cd in their effects on 16HBE cells. We demonstrated that co-exposure to CBNPs-Cd increases the synthesis of autophagosomes and regulates the acidic environment of lysosomes, thereby inhibiting autophagy-lysosome fusion and enhancing the inflammatory response in both 16HBE cells and mouse lung. These findings provide evidence for a comprehensive understanding of the interaction between CBNPs and Cd in mixed pollutants, as well as for the prevention and control of occupational exposure to these two chemicals.


Assuntos
Cádmio , Nanopartículas , Camundongos , Humanos , Animais , Cádmio/toxicidade , Fuligem/toxicidade , Autofagia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células Epiteliais , Lisossomos/metabolismo , Nanopartículas/toxicidade
4.
Environ Sci Technol ; 57(51): 21593-21604, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37955649

RESUMO

Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Humanos , Compostos Policíclicos/análise , Fuligem/análise , Fuligem/química , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pulmão , Oxigênio/análise , Metaboloma , Poluentes Atmosféricos/análise , Emissões de Veículos/análise
5.
Wei Sheng Yan Jiu ; 52(5): 702-709, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802892

RESUMO

OBJECTIVE: The effects of nano-carbon black on neural behavior and Th17 cell infiltration in mice were investigated by establishing a mice model of subacute dynamic inhalation of carbon black aerosol. METHODS: 36 SPF grade male C57BL/6 mice were randomly divided into a control group(clean air), a low carbon black group(15 mg/m~3), and a high carbon black group(30 mg/m~3). Nano-carbon black particles were blown into the dynamic exposure cabinet by aerosol generator for 28 days. Morris water maze test and open field test were used to detect the neural behavior of mice. The pathological changes of prefrontal cortex in mice were observed by HE staining. The proportion of Th17/CD4~+ cells in peripheral blood and brain tissue of mice was detected by flow cytometry. Western blotting was used to detect the protein expression of interleukin(IL)-17 and IL-23 in the prefrontal cortex of mice. RESULTS: The result of open field test showed that compared with the control group, the central area residence time and standing times of mice in the low and high carbon black groups decreased significantly(P<0.05), and the defecation times of mice in the high carbon black group increased significantly(P<0.05). The central area residence time of mice in the high carbon black group was significantly lower than that in the low carbon black group(P<0.05). The Morris water maze result showed that the escape latency of the high carbon black group mice on the 3rd day was significantly higher than that of the control group(P<0.05). Meanwhile, the escape latency of the carbon black group mice on the 4th day was significantly higher than that of the control group(P<0.05). The positioning navigation test showed that the number of mice crossing the platform in the high carbon black group was significantly higher than that in the control group(P<0.05). The HE staining result showed that the neural cells in the prefrontal cortex of the control group mice were round, the cytoplasm was plump and evenly distributed, and the nucleus was clearly visible in an oval shape. The low carbon black group showed that the neural cells were deep staining of nerve cells, blurred structure, and nuclear pyknosis. The high carbon black group further intensified. The flow cytometry result showed that compared with the control group, the percentage of Th17/CD4~+T cells in the peripheral blood of the carbon black group mice was significantly increased, and the high carbon black group mice were significantly higher than the low carbon black group(P<0.05). Meanwhile, the percentage of Th17/CD4~+T cells in the brain tissue of carbon black treated mice significantly increased(P<0.05). The high carbon black group was significantly higher than the low carbon black group(P<0.05). Western blotting result showed that compared with the control group, the expression of IL-17 and IL-23 proteins in the prefrontal cortex of the carbon black group mice brain tissue was significantly increased(P<0.05). Compared with the low carbon black group, the expression of IL-17 and IL-23 proteins in the prefrontal cortex of the high carbon black group mice brain tissue was significantly increased(P<0.05). The difference was statistically significant. CONCLUSION: Nano-carbon black exposure can lead to an increase in Th17 cells in peripheral blood and brain tissue of mice, which in turn promotes damage to the prefrontal cortex of mice, and ultimately causes neurobehavioral changes in mice.


Assuntos
Interleucina-17 , Células Th17 , Camundongos , Animais , Masculino , Células Th17/metabolismo , Fuligem/toxicidade , Camundongos Endogâmicos C57BL , Aerossóis , Interleucina-23
6.
Environ Geochem Health ; 45(12): 9653-9667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794280

RESUMO

Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.


Assuntos
Asma , Fuligem , Camundongos , Animais , Fuligem/toxicidade , Umidade , Capsaicina/metabolismo , Asma/induzido quimicamente , Pulmão , Vitamina E/farmacologia , Vitamina E/metabolismo
7.
Artigo em Chinês | MEDLINE | ID: mdl-37667152

RESUMO

Objective: To explore the toxic effect of carbon black nanoparticles on human bronchial epithelial cells, and identify the differentially expressed circular RNA based on the full transcriptome high-throughput sequencing, so as to provide evidence for the development of biomarkers exposed to carbon black nanoparticles and their application on epigenetic toxicology. Methods: In June 2020, 16 HBE cells were treated with carbon black nanoparticles at concentrations of 20, 40 and 80 µg/ml, and 16 HBE cells without any intervention were used as the control group. The cytotoxicity of carbon black nanoparticles was detected by CCK8 and LDH experiments. Real-time quantitative fluorescent PCR (qRT-PCR) and ELISA were used to detect the changes of interleukin-6 (IL-6) and interleukin-8 (IL-6, IL-8) mRNA and protein levels of carbon black nanoparticles with concentration gradient after 72 h exposure. Western blot analysis was conducted to detect the expression levels of toll-like receptor 4 (TLR4), phosphorylated nuclear factor-κB (P-NF-κB), apoptosis-related speckled protein (ASC) and Caspase-1 associated with nuclear factor-κB. According to high-throughput sequencing results, differentially expressed Circrnas were screened and identified by qRT-PCR, and those with stable differentially expressed circrnas and the strongest association with the NF-κB pathway were selected for ring performance identification. Results: After being exposed to carbon black nanoparticles for 72 h, the activity of 16HBE cells decreased significantly (P<0.05), and the release of lactate dehydrogenase increased significantly (P<0.05). Compared with control group, mRNA expression levels of IL-6 and IL-8, protein levels of IL-6 and IL-8 were increased, and protein levels of TLR4, p-NF-κB, ASC and Caspase-1 were significantly up-regulated in 16 HBE cells of different concentrations, with statistical significance (P<0.05). Compared with the control group, a total of 492 differentially expressed circular Rnas (|log2 FC|>1) were detected. Among the 5 differentially expressed (P<0.05) circular Rnas, circ_002642 was selected as the object of subsequent research on circular Rnas, affter 72 hours of exposure to 80 µg/ml CBNPs, 16HBE cells showed signlficantly higher expression of circ_002642 (P<0.05) . Conclusion: Carbon black nanoparticles can induce differentially expressed circular RNAs associated with inflammatory response in human bronchial epithelial cells.


Assuntos
NF-kappa B , RNA Circular , Humanos , Interleucina-8 , Fuligem/toxicidade , Receptor 4 Toll-Like , Interleucina-6 , Células Epiteliais , Caspase 1
8.
Sci Total Environ ; 905: 167200, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742976

RESUMO

Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.


Assuntos
Pulmão , Fuligem , Humanos , Fuligem/toxicidade , Inflamação , Lisossomos , Carbono/metabolismo
9.
Respir Physiol Neurobiol ; 316: 104140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586603

RESUMO

Fine airborne particulate matter enter the respiratory system, induce oxidative stress and initiate DNA damage. The aim of our study was the estimation of cell viability, oxidative stress, DNA damage, cell cycle alterations and activation of histone H2A.X. Experiments were done on lung alveolar epithelial (A549) cells grown for 24 h with 200 µg mL-1 coarse carbon black (CB), or nanoparticulate CB (NPCB). Neither CB nor glutathione depletion altered cell viability, growth rates, and H2A.X expression while NPCB decreased cell viability, increased oxidative stress and DNA damage. The cell cycle was blocked at G0/G1. NPCB but not CB increased expression and activation of H2A.X at mRNA and protein levels. Co-expression data point to γH2A.X as a major NPCB target, and show the interdependence of γH2A.X and oxidative stress. We conclude, that NPCB increases γ-H2A.X expression in A549 cells at mRNA and protein levels and stimulates H2A.X (Ser139), phosphorylation, associated with oxidative stress, the DNA damage response and G1 cell cycle arrest.


Assuntos
Células Epiteliais Alveolares , Histonas , Fuligem/toxicidade , Fuligem/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo
10.
Nanotoxicology ; 17(4): 338-371, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37300873

RESUMO

This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Pneumonia , Animais , Pulmão , Fuligem/toxicidade , Nanoestruturas/toxicidade , Líquido da Lavagem Broncoalveolar , Tamanho da Partícula , Exposição por Inalação
11.
Part Fibre Toxicol ; 20(1): 15, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085867

RESUMO

BACKGROUND: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.


Assuntos
Microbiota , Ozônio , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , RNA Mensageiro/metabolismo
12.
Anal Bioanal Chem ; 415(11): 2121-2132, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36829041

RESUMO

Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions. It was possible to disperse CB in a non-ionic surfactant aqueous solution due to the steric effect provided by surfactant molecules attached on the CB surface which prevented agglomeration. The protection provided by the surfactant or by culture media alone was insufficient to ensure good dispersion stability needed for carrying out in vitro toxicity studies. On the other hand, cell culture media in combination with the surfactant improved dispersion stability considerably, enabling the generation of shorter particles and a more favourable zeta potential magnitude, leading to greater stability due to electrostatic repulsion. It was demonstrated that the presence of amino acids in the culture media improved the monodisperse nature and stability of the CB dispersions, and resulted in a turn towards more negative zeta potential values when the pH was above the amino acid isoelectric point (IEP). Culture media used in real cell culture scenarios were also tested, and in vitro toxicity assays were developed optimizing the compatible amount of surfactant.


Assuntos
Fracionamento por Campo e Fluxo , Nanoestruturas , Surfactantes Pulmonares , Técnicas de Cultura de Células , Meios de Cultura , Fracionamento por Campo e Fluxo/métodos , Nanoestruturas/toxicidade , Nanoestruturas/química , Tamanho da Partícula , Fuligem/toxicidade , Tensoativos/toxicidade , Ponto Isoelétrico
13.
Toxicol Sci ; 192(1): 71-82, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36610987

RESUMO

Inhalation of carbon black nanoparticles (CBNPs) can impair lung tissue and cause DNA damage, but the epigenetic mechanism responsible for these effects is still unclear. We explored the role of circular RNAs (circRNAs) in DNA damage induced by CBNPs in the lung. Human bronchial epithelial cell lines (16HBE and BEAS-2B) were treated with 0, 5, 10, 20, 40, or 80 µg/ml CBNPs for 24, 48, and 72 h, and BALB/c mice were exposed to 8 and 80 µg/d CBNPs for 14 days to establish in vitro and vivo models of CBNP exposure, respectively. We found that CBNPs caused DNA double-strand breaks in the lung. Using high-throughput sequencing and quantitative real-time PCR to identify CBNP-related circRNAs, we identified a novel circRNA (circ_0089282) that was overexpressed in the CBNP-exposed group. We used gain-/loss-of-function approaches, RNA pulldown assays, and silver staining to explore the regulatory function of circ_0089282 and its interactions with targeted proteins. We found that circ_0089282 interference could increase CBNP-induced DNA damage, whereas overexpression resulted in the opposite. Circ_0089282 could directly bind to the fused in sarcoma (FUS) protein and positively regulate downstream DNA repair protein DNA ligase 4 (LIG4) through FUS. This regulatory effect of circRNA on DNA damage via promotion of LIG4 illustrated the interactions between genetics and epigenetics in toxicology.


Assuntos
MicroRNAs , Nanopartículas , Camundongos , Animais , Humanos , RNA Circular/genética , Fuligem/toxicidade , Pulmão , Dano ao DNA , Reparo do DNA , Nanopartículas/toxicidade , MicroRNAs/metabolismo
14.
Toxicol Sci ; 191(1): 61-78, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36303316

RESUMO

Air pollution accounts for more than 7 million premature deaths worldwide. Using ultrafine carbon black (CB) and ozone (O3) as a model for an environmental co-exposure scenario, the dose response relationships in acute pulmonary injury and inflammation were determined by generating, characterizing, and comparing stable concentrations of CB aerosols (2.5, 5.0, 10.0 mg/m3), O3 (0.5, 1.0, 2.0 ppm) with mixture CB + O3 (2.5 + 0.5, 5.0 + 1.0, 10.0 + 2.0). C57BL6 male mice were exposed for 3 h by whole body inhalation and acute toxicity determined after 24 h. CB itself did not cause any alteration, however, a dose response in pulmonary injury/inflammation was observed with O3 and CB + O3. This increase in response with mixtures was not dependent on the uptake but was due to enhanced reactivity of the particles. Benchmark dose modeling showed several-fold increase in potency with CB + O3 compared with CB or O3 alone. Principal component analysis provided insight into response relationships between various doses and treatments. There was a significant correlation in lung responses with charge-based size distribution, total/alveolar deposition, oxidant generation, and antioxidant depletion potential. Lung tissue gene/protein response demonstrated distinct patterns that are better predicted by either particle dose/aerosol responses (interleukin-1ß, keratinocyte chemoattractant, transforming growth factor beta) or particle reactivity (thymic stromal lymphopoietin, interleukin-13, interleukin-6). Hierarchical clustering showed a distinct signature with high dose and a similarity in mRNA expression pattern of low and medium doses of CB + O3. In conclusion, we demonstrate that the biological outcomes from CB + O3 co-exposure are significantly greater than individual exposures over a range of aerosol concentrations and aerosol characteristics can predict biological outcome.


Assuntos
Poluentes Atmosféricos , Pneumopatias , Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Lesão Pulmonar/metabolismo , Aerossóis e Gotículas Respiratórios , Pneumopatias/induzido quimicamente , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
15.
Sci Total Environ ; 862: 160770, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502967

RESUMO

As a critical component of atmospheric ultrafine particulates, ultrafine carbon black (UFCB) brings great exposure risk to organisms. At present, the action pathway and activity regulation mechanism of UFCB on functional proteins in vivo are not clear, and the size-dependent effects of UFCB during this process need to be elucidated. Superoxide dismutase (SOD), one of the most applied biomarkers to assess the environmental impact of pollutants, plays crucial roles in resistance to oxidative stress. Here, based on the inactivation of SOD (84.79 %, 86.81 % and 91.70 %) in primary mouse hepatocytes exposed to UFCB (13 nm, 50 nm and 95 nm), oxidative stress, genotoxicity and protein molecular studies were employed to elucidate the inactivation mechanisms. Results showed that inhibition of UFCB-mediated superoxide anion (O2-) contributed to a decrease in SOD activity. Furthermore, the significant increase in 8-hydroxy-2-deoxyguanosine content and the comet tail formation indicated the occurrence of DNA damage, supporting that concomitant aberrant transcriptional and protein translational under gene regulation should be responsible for SOD inactivation. At the molecular level, the constricted backbone, reduced content of α-helix and fluorescence sensitization all demonstrated that the attachment-type binding of SOD on UFCB to form the 'protein corona' disrupted protein structure. Enzyme activity assays indicated that SOD backbone tightening and helix decay resulted in decreased activity, which should be another reason for intracellular SOD inactivation. More importantly, the particle sizes of UFCB exert powerful influences on SOD inactivation mechanisms. Smaller UFCB (13 nm) induced more severe O2- inhibition and DNA damage, while UFCB50nm with the best dispersity bound more SOD and induced stronger molecular toxicity, which are their different strengths in stressing SOD inactivation in hepatocytes. Our findings provide novel insights for exploring functional proteins activity and underscore a potentially size-dependent risk of nanoparticles.


Assuntos
Coroa de Proteína , Superóxidos , Camundongos , Animais , Fuligem/toxicidade , Superóxido Dismutase , Proteínas , Dano ao DNA
16.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508801

RESUMO

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Assuntos
Apoferritinas , Autofagia , Interleucina-33 , Lisossomos , Naftoquinonas , Fuligem , Humanos , Apoferritinas/metabolismo , Autofagia/efeitos dos fármacos , Interleucina-33/metabolismo , Macrófagos/efeitos dos fármacos , Naftoquinonas/toxicidade , Fuligem/toxicidade , Regulação para Cima , Lisossomos/efeitos dos fármacos
17.
Part Fibre Toxicol ; 19(1): 63, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242080

RESUMO

BACKGROUND: The toxicokinetic behaviour of nanostructured particles following pulmonary or oral deposition is of great scientific interest. In this toxicokinetic study, following the general principles of OECD TG 417, the systemic availability of carbon black, a nanostructured material consisting of agglomerated aggregates was characterised. METHODS: Each of two grades of beryllium-7 labelled carbon black (Monarch® 1000, oxidized and Printex® 90; untreated) was administered either intratracheally or orally to adult rats. Independent of route, rats received a single dose of approximately 0.3 mg radiolabelled carbon black. A total of 12 rats were treated per grade and per exposure route: 4 females each for feces/urine/organs and serial blood kinetics; 4 males for organs. At necropsy, the complete suite of organs was analysed for females, but only the lungs, liver, kidney, reproductive organs for males. RESULTS: In the pulmonarily exposed animals, 7Be-Monarch® 1000 and 7Be-Printex® 90 was detected in feces in the first 3 days after treatment at significant levels, i.e. 17.6% and 8.2%, respectively. In urine, small percentages of 6.7% and 0.4% were observed, respectively. In blood, radioactivity, representative of carbon black was within the background noise of the measurement method. At necropsy, 20 days post-instillation, both test items were practically exclusively found in lungs (75.1% and 91.0%, respectively) and in very small amounts (approximately 0.5%) in the lung-associated lymph nodes (LALN). In the other organs/tissues the test item was not detectable. BAL analyses indicated that carbon black particles were completely engulfed by alveolar macrophages. In orally exposed animals, 98% (7Be-Monarch® 1000) and 99% (7Be-Printex® 90) of the measured radioactivity was detected in feces. Excretion was complete within the first 3 days following treatment. 1.3% and 0.5% of measured activity was attributable to urine in animals that received 7Be-Monarch® 1000 and 7Be-Printex® 90, respectively. Radioactivity was absent in blood and other organs and tissues. CONCLUSION: Radioactivity, representative of carbon black, was not detected beyond the experimentally defined limit of quantitation systemically after deposition in lungs or stomach in rats. Under these experimental conditions, the two CB samples were not shown to translocate beyond the lung or the GI tract into the blood compartment.


Assuntos
Pulmão , Fuligem , Administração por Inalação , Animais , Feminino , Linfonodos , Masculino , Ratos , Fuligem/toxicidade , Toxicocinética
18.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109745

RESUMO

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carbono , Humanos , Filipinas , Sistema Respiratório , Fuligem/análise , Fuligem/toxicidade , Meios de Transporte , Emissões de Veículos/análise , Emissões de Veículos/toxicidade , Adulto Jovem
19.
Sci Total Environ ; 851(Pt 1): 158103, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988636

RESUMO

Given the lack of a comprehensive understanding of the complex metabolism and variable exposure environment, carbon particles in macrophages have become a potentially valuable biomarker to assess the exposure level of atmospheric particles, such as black carbon. However, the tedious and subjective quantification method limits the application of carbon particles as a valid biomarker. Aiming to obtain an accurate carbon particles quantification method, the deep learning and binarization algorithm were implemented to develop a quantitative tool for carbon content in airway macrophage (CCAM), named PyCoCa. Two types of macrophages, normal and foamy appearance, were applied for the development of PyCoCa. In comparison with the traditional methods, PyCoCa significantly improves the identification efficiency for over 100 times. Consistency assessment with the gold standard revealed that PyCoCa exhibits outstanding prediction ability with the Interclass Correlation Coefficient (ICC) values of over 0.80. And a proper fresh dye will enhance the performance of PyCoCa (ICC = 0.89). Subsequent sensitivity analysis confirmed an excellent performance regarding accuracy and robustness of PyCoCa under high/low exposure environments (sensitivity > 0.80). Furthermore, a successful application of our quantitative tool in cohort studies indicates that carbon particles induce macrophage foaming and the foaming decrease the carbon particles internalization in reverse. Our present study provides a robust and efficient tool to accurately quantify the carbon particles loading in macrophage for exposure assessment.


Assuntos
Carbono , Macrófagos Alveolares , Aerossóis/análise , Biomarcadores/metabolismo , Carbono/análise , Humanos , Macrófagos/química , Macrófagos Alveolares/química , Macrófagos Alveolares/metabolismo , Fuligem/análise , Fuligem/toxicidade
20.
Front Public Health ; 10: 907157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910918

RESUMO

Inhalation studies involving laboratory rats exposed to poorly soluble particles (PSLTs), such as carbon black and titanium dioxide, among others, have led to the development of lung cancer in conditions characterized as lung overload. Lung overload has been described as a physiological state in which pulmonary clearance is impaired, particles are not effectively removed from the lungs and chronic inflammation develops, ultimately leading to tumor growth. Since lung tumors have not occurred under similar states of lung overload in other laboratory animal species, such as mice, hamsters and guinea pigs, the relevance of the rat as a model for human risk assessment has presented regulatory challenges. It has been suggested that coal workers' pneumoconiosis may reflect a human example of apparent "lung overload" of poorly soluble particles. In turn, studies of risk of lung cancer in coal miners may offer a valuable perspective for understanding the significance of rat inhalation studies of PSLTs on humans. This report addresses whether coal can be considered a PSLT based on its composition in contrast to carbon black and titanium dioxide. We also review cohort mortality studies and case-control studies of coal workers. We conclude that coal differs substantially from carbon black and titanium dioxide in its structure and composition. Carbon black, a manufactured product, is virtually pure carbon (upwards of 98%); TiO2 is also a manufactured product. Coal contains carcinogens such as crystalline silica, beryllium, cadmium and iron, among others; in addition, coal mining activities tend to occur in the presence of operating machinery in which diesel exhaust particles, a Type I Human carcinogen, may be present in the occupational environment. As a result of its composition and the environment in which coal mining occurs, it is scientifically inappropriate to consider coal a PSLT. Despite coal not being similar to carbon black or TiO2, through the use of a weight of evidence approach-considered the preferred method when evaluating disparate studies to assess risk- studies of coal-mine workers do not indicate a consistent increase in lung cancer risk. Slight elevations in SMR cannot lead to a reliable conclusion about an increased risk due to limitations in exposure assessment and control of inherent biases in case-control studies, most notably confounding and recall bias. In conclusion, the weight of the scientific literature suggests that coal mine dust is not a PSLT, and it does not increase lung cancer risk.


Assuntos
Neoplasias Pulmonares , Mineradores , Animais , Carvão Mineral/efeitos adversos , Cricetinae , Poeira , Cobaias , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Ratos , Fuligem/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...